
gpicamera

September 10, 2019
13:08

Contents

1 Routine to set up camera views for use with NSTX Gas Puff Imaging Experiment 1

2 INDEX 6

i

§1 [#1] gpicameraRoutine to set up camera views for use with NSTX Gas Puff Imaging Experiment 1

1 Routine to set up camera views for use with NSTX Gas Puff
Imaging Experiment

This file serves as an example usr2ddetector .web routine for the more complicated case of a 2-D imaging
camera. The particular parameters used here are from the 2004 NSTX run campaign. More recent versions
differ only in the numerical values of these parameters; the basic principles remain the same.

A key distinction between this and the approach used in simulating one dimensional imaging arrays (e.g.,
as in btopdetector .web) is that memory considerations prohibit computing the simulated image as part of the
primary simulation (i.e., flighttest). For example, in this case, the de zone frags array would have 64× 64×
zn num elements. For a typical 3-D GPI simulation, zn num ∼ 105 → 4 × 108 64 bit real numbers or > 3
GB, quite a large amount of memory.

We instead compute a much lower resolution (represented by the nx and ny macro parameters below; both
= 5) image during the run of flighttest ; the resulting data are used only to check the simulation and camera
geometry. The full camera image is computed subsequently via the postdetector routine. Because all of the
constituent chord integrals are independent, each can be computed separately so that only zn num elements
are needed in de zone frags at a time. This independence also allows the calculation to be parallelized
for efficiency. The particular subroutine called from postdetector is not detector setup , but gpi views . An
important implication of this is that postdetector is presently specific to these GPI applications.

Each of the camera pixels corresponds to a single chord specified by two points, as is described in the
Defining Radiation Detectors section of the User’s Manual. One of these points is the camera vertex,
represented by the macros x p0 , y p0 , z p0 below. The “p” in the macro refers to the fact that the DEGAS
2 values for these coordinates are in a system rotated toroidally from the experimental coordinate system;
this is explained further below.

The second point of each chord can be determined by whatever means are available. In all GPI simulations
to date, these second points are obtained as a mapping between the camera’s pixel coordinates and physical
coordinates on a “target plane”. Conceptually, this is just a plane centered on the gas puff. In the NSTX
case, it is defined in principle by a line (the gas manifold, a stainless steel tube) and a vector pointing at the
center stack. In reality, it corresponds to a rectangular piece of metal bolted to the gas manifold.

Coordinates of arbitrarily located physical points on this “plane” are taken via a precision measuring arm,
and a plane of the form

a0x + a1y + a2z = 1

is fit to the resulting data. For convenience, the DEGAS 2 simulations place the center of the gas manifold
at zero toroidal angle. Since the measurement arm data are referenced to a different location, a toroidal
rotation phi must be applied to the target plane before use here. The end result is a second set of plane
coefficients, a′0 → a0 p , etc. As noted above, this same rotation is applied to the coordinates of the camera
vertex.

The gas puff for GPI experiments on Alcator C-Mod is provided by one or more capillaries at a single
toroidal angle. In this case, the target plane is simply a vertical plane at that angle. The adaptation of
this file to those experiments would require changing the values of the plane coefficients. Examples of such
specifications can be found in postdetector .web , where the same target plane data are also used.

The mapping of points on this target plane to pixel coordinates is determined from an image of this
same calibration target plane recorded by the camera (in NSTX, the process is rendered more complex by
the optical system, although the overall procedure is the same). The particular approach used in NSTX

§1–§1.1 [#1–#2] gpicameraRoutine to set up camera views for use with NSTX Gas Puff Imaging Experiment 2

consists first of using the resulting image to fit the mapping between the pixel coordinates (cx, cy) and spatial
coordinates (R,Z):

R = aRxcx + aRycy + R0

Z = aZxcx + aZycy + Z0,

where cx ranges from cx min to cx max , and cy ranges from cy min to cy max . Note that the coefficients
in these equations do not appear below as variables or macros but simply as constants in the expressions
for r maj and z. Also note that relative spatial calibrations made during the campaign indicated that the
camera view had shifted in the cy direction, leading to the shift in that coordinate noted below.

But, in a 3-D simulation we need to know all three coordinates, (x, y, z) in the target plane for each pixel.
Obviously, z(cx, cy) = Z(cx, cy). The values of x(cx, cy) and y(cx, cy) are obtained from a quadratic equation

derived by combining the definition of R =
√
x2 + y2 with the above equation for the target plane.

$Id: e5cf18133abfe04fa21a6491e8eb68b064c8a7fd $

"gpicamera.f" 1 ≡
@m ḞILE ’gpicamera.web’

The unnamed module.

"gpicamera.f" 1.1 ≡
〈Functions and Subroutines 1.2 〉

§1.2 [#3] gpicameraRoutine to set up camera views for use with NSTX Gas Puff Imaging Experiment 3

GPI camera views.

"gpicamera.f" 1.2 ≡
@m nx 5 // Number of chords in radial direction.
@m ny 5 // Number of chords in poloidal direction.
@m cx min zero
@m cx max const (6.3, 1) // Number of radial pixels in real camera.
@m cy min zero
@m cy max const (6.3, 1) // Number of poloidal pixels in real camera.
@m a0 const (−3.60752) // Coefficients of the camera”s “target plane”
@m a1 const (2.11865)
@m a2 const (3.17544)
@m phi const (6.146, 1) ∗ PI / const (1.8, 2) // Toroidal shift to my system
@m x p0 const (1.61388) // Camera vertex
@m y p0 const (−0.53975)
@m z p0 const (−0.214046)

〈Functions and Subroutines 1.2 〉 ≡
subroutine detector setup

implicit none f77
de common
zn common
implicit none f90

〈Memory allocation interface 0 〉

detector total views = nx ∗ ny
var alloc(de view points)
var alloc(de view algorithm)
var alloc(de view halfwidth)

call initialize zone frags

de grps = 0
de view size = 0
var alloc(de view tab)

call detector setup a

return
end

See also sections 1.3 and 1.4.

This code is used in section 1.1.

§1.3 [#4] gpicameraRoutine to set up camera views for use with NSTX Gas Puff Imaging Experiment 4

Extension of the above subroutine. Statements actually making assignments to the detector pointer arrays
(de zone frags specfically) need to be separated from their allocation above so that their array indexing gets
handled correctly.

〈Functions and Subroutines 1.2 〉 +≡
subroutine detector setup a

define varp(zone frags , FLOAT , zone ind)

implicit none f77
de common
zn common
implicit none f90

integer view , num , var , tab index , spacing , ix , iy , i, zone , ix max , iy max
integer grp views nx ∗ny
real var min , var max , mult

declare varp(zone frags)

〈Memory allocation interface 0 〉

var alloc(zone frags)

/∗ Use local variables for nx and ny so the arguments to gpi views can have other values than
those given by the macros at the top of this file. ∗/

ix max = nx
iy max = ny
do ix = 1, nx

do iy = 1, ny
view = (iy − 1) ∗ nx + ix
call gpi views (ix , ix max , iy , iy max , vc args (de view points view ,de view start),

de view halfwidth view , de view algorithm view , zone frags) /∗ This routine inserts
zone frags into the common array de zone frags , compressing the data in the porcess. ∗/

call add zone frags (view , zone frags)

end do
end do

var free (zone frags)

num = nx ∗ ny
var = de var unknown
tab index = zero
var min = zero
var max = zero
mult = zero
spacing = de spacing unknown
do i = 1, num

grp views i = i
end do
call de grp init (’GPI chords’, num , var , tab index , var min , var max , mult , spacing , grp views)

return
end

§1.4 [#5] gpicameraRoutine to set up camera views for use with NSTX Gas Puff Imaging Experiment 5

Details of the GPI camera views. These are separated here so that they can be called by a post-processing
routine, separate from the detector class arrays.

〈Functions and Subroutines 1.2 〉 +≡
subroutine gpi views (ix , ix max , iy , iy max , vc dummy (points), halfwidth , algorithm , zone frags)

implicit none f77
zn common
implicit none f90

integer ix , ix max , iy , iy max // Input

integer algorithm // Output
real halfwidth

vc decl (points de view start :de view end)
real zone frags zn num

real delta cx , delta cy , a0 p , a1 p , a2 p , cx , cy , /∗ Local ∗/
r maj , z, disc , x p , y p , z p

assert (ix max > 1)
assert (iy max > 1)
delta cx = (cx max − cx min) / areal(ix max − 1)
delta cy = (cy max − cy min) / areal(iy max − 1)

/∗ Rotate Ricky”s “target plane” to my coordinate system. The “p” denotes “prime”. ∗/
a0 p = a0 ∗ cos(phi) + a1 ∗ sin(phi)
a1 p = a1 ∗ cos(phi)− a0 ∗ sin(phi)
a2 p = a2
cx = cx min + areal(ix − 1) ∗ delta cx
cy = cy min + areal(iy − 1) ∗ delta cy

/∗ This was the original mapping provided by Ricky Maqueda. ∗/
@#if 0

r maj = const (1., −3) ∗ (−const (0.7555) ∗ cx − const (3.5159) ∗ (cy + const (2.67)) + const (1.604, 3))
z = const (1., −3) ∗ (const (2.8476) ∗ cx − const (0.5254) ∗ (cy + const (2.67)) + const (1.31, 2))

@#endif
/∗ Subsequently concluded that a 6 pixel was appropriate for these shots: ∗/

r maj = const (1., −3) ∗ (−const (0.7555) ∗ cx − const (3.5159) ∗ (cy + const (6.0)) + const (1.604, 3))
z = const (1., −3) ∗ (const (2.8476) ∗ cx − const (0.5254) ∗ (cy + const (6.0)) + const (1.31, 2))

/∗ Solve for corresponding Cartesian coordinates in my system using the rotated target plane and
R2 = x2 + y2. ∗/

z p = z
disc = (a0 p2 + a1 p2) ∗ r maj 2 − (one − a2 p ∗ z p)2

assert (disc > zero)
x p = (a0 p ∗ (one − a2 p ∗ z p) + a1 p ∗ sqrt(disc)) / (a0 p2 + a1 p2)
y p = (a1 p ∗ (one − a2 p ∗ z p)− a0 p ∗ sqrt(disc)) / (a0 p2 + a1 p2) /∗ The “4” here accounts

for the fact that there are two computed variables, x p and y p , and that they are squared. ∗/
assert (abs(r maj 2 − x p2 − y p2) < const (4.0) ∗ epsilon)
algorithm = de algorithm circular
halfwidth = const (3.9, −1) ∗ PI / const (1.8, 2)
vc set (points de view start , x p0 , y p0 , z p0)
vc set (points de view end , x p , y p , z p)
call detector view setup(vc args (points de view start), halfwidth , algorithm , zone frags)

return
end

§2 [#6] gpicamera INDEX 6

2 INDEX

abs: 1.4.
add zone frags : 1.3.
algorithm : 1.4.
areal: 1.4.
assert : 1.4.
a0 : 1.2, 1.4.
a0 p : 1, 1.4.
a1 : 1.2, 1.4.
a1 p : 1.4.
a2 : 1.2, 1.4.
a2 p : 1.4.

btopdetector : 1.

const : 1.2, 1.4.
cos: 1.4.
cx : 1.4.
cx max : 1, 1.2, 1.4.
cx min : 1, 1.2, 1.4.
cy : 1.4.
cy max : 1, 1.2, 1.4.
cy min : 1, 1.2, 1.4.

de algorithm circular : 1.4.
de common : 1.2, 1.3.
de grp init : 1.3.
de grps : 1.2.
de spacing unknown : 1.3.
de var unknown : 1.3.
de view algorithm : 1.2, 1.3.
de view end : 1.4.
de view halfwidth : 1.2, 1.3.
de view points : 1.2, 1.3.
de view size : 1.2.
de view start : 1.3, 1.4.
de view tab : 1.2.
de zone frags : 1, 1.3.
declare varp : 1.3.
define varp : 1.3.
delta cx : 1.4.
delta cy : 1.4.
detector setup : 1, 1.2.
detector setup a : 1.2, 1.3.
detector total views : 1.2.
detector view setup : 1.4.
disc : 1.4.

epsilon : 1.4.

ḞILE: 1.
flighttest : 1.
FLOAT : 1.3.

gpi views : 1, 1.3, 1.4.
grp views : 1.3.

halfwidth : 1.4.

i: 1.3.
implicit none f77 : 1.2, 1.3, 1.4.
implicit none f90 : 1.2, 1.3, 1.4.
initialize zone frags : 1.2.
ix : 1.3, 1.4.
ix max : 1.3, 1.4.
iy : 1.3, 1.4.
iy max : 1.3, 1.4.

mult : 1.3.

num : 1.3.
nx : 1, 1.2, 1.3.
ny : 1, 1.2, 1.3.

one : 1.4.

phi : 1, 1.2, 1.4.
PI : 1.2, 1.4.
points : 1.4.
postdetector : 1.

r maj : 1, 1.4.

sin: 1.4.
spacing : 1.3.
sqrt: 1.4.

tab index : 1.3.

usr2ddetector : 1.

var : 1.3.
var alloc : 1.2, 1.3.
var free : 1.3.
var max : 1.3.
var min : 1.3.
vc args : 1.3, 1.4.
vc decl : 1.4.
vc dummy : 1.4.
vc set : 1.4.
view : 1.3.

web : 1.

x p : 1.4.
x p0 : 1, 1.2, 1.4.

y p : 1.4.
y p0 : 1, 1.2, 1.4.

z: 1.4.
z p : 1.4.
z p0 : 1, 1.2, 1.4.
zero : 1.2, 1.3, 1.4.

gpicamera INDEX 7

zn common : 1.2, 1.3, 1.4.
zn num : 1, 1.4.
zone : 1.3.
zone frags : 1.3, 1.4.
zone ind : 1.3.

gpicamera Names of the Modules 8

〈Functions and Subroutines 1.2, 1.3, 1.4 〉 Used in section 1.1.

〈Memory allocation interface 0 〉 Used in sections 1.3 and 1.2.

COMMAND LINE: "fweave -f -i! -W[-ybs15000 -ykw800 -ytw40000 -j -n/

/Users/dstotler/degas2/src/gpicamera.web".

WEB FILE: "/Users/dstotler/degas2/src/gpicamera.web".

CHANGE FILE: (none).

GLOBAL LANGUAGE: Fortran.

	Routine to set up camera views for use with NSTX Gas Puff Imaging Experiment
	INDEX

